The Nilar EC battery pack


Nilar battery packs are optimized for installation in large format energy storage systems. The batteries can be installed in cabinets or racks. A battery management system is integrated on the battery packs together with industrial connectors for electrical and communication interfaces. The electronic battery pack system, communication bus and the battery pack are designed to fulfil requirements for electrical safety in battery systems with a nominal voltage up to 600V.


  • Nilar Hydride® bi-polar design enables Nilar to offer a safer, more reliable and cost efficient energy storage solutions.
  • High energy density with excellent discharge power capability over a wide temperature range.
  • The Nilar battery requires very low to no maintenance and is a sealed design with no emissions of gases or electrolyte during its service life.
  • The Nilar battery is easy to transport and is not affected by any costly or complicated transport regulations.
  • The Nilar battery contains none of the regulated heavy metals mercury, cadmium and lead. The design has been developed to enable a cost efficient recycling process and a high degree of reusable materials.

Nilar EC pack features

Nominal voltage
The cell voltage of a battery cell is governed by the electrochemical potentials of the active materials used in the negative and positive electrodes and the electrolyte. For the nickel-metal hydride system used in Nilar battery packs, the nominal cell voltage is 1.2 V. The Nilar 12 V module is comprised of 10 cells connected in series within the module, achieving a nominal module voltage of 12 V. The nominal voltage of Nilar battery packs is determined by the number of 12 V modules connected in series within the battery pack. Battery packs in turn are connected in series to meet the required system voltage. Battery packs connected in series to match the required system voltage, forming a string. The nominal voltage of a string equals the number of battery packs multiplied by the nominal battery pack voltage.

Rated capacity
The battery capacity is rated in ampere-hours (Ah) and denotes the quantity of electricity a fully charged battery can deliver at a 5 h discharge to 1 V per cell at +20°C. Nilar 12 V modules have a capacity rating of 10 Ah. Nilar battery packs are made with a number of 12 V modules connected in series and therefore the rated battery pack capacity is 10 Ah. To meet the required capacity of a Nilar battery installation, the battery packs, or battery strings, are connected in parallel. The total battery capacity is made in multiples of 10 Ah.

Operating voltage
Typical cell operational voltage is minimum 1 V per cell at discharge to maximum 1.6 V during charge. This corresponds to a 10 – 16 V range for the module.

Operating temperatures
The batteries can be operated in temperatures from -20°C to +50°C.

Intermediate state of charge
Batteries can be stored or operated at an intermediate state of charge without loss of performance.

At normal operating conditions, Nilar battery packs do not produce any emissions; therefore, they require no forced ventilation during operation

The Nilar battery is a stable electrochemical system. The design mitigates corrosion to prevent premature and unpredictable end of life. The design is virtually shock and vibration resistant. Testing shows a graceful decline in performance over the life of the pack.

Nilar battery packs can be stored several years without loss of performance.

Nilar battery packs use a sealed design that requires minimal maintenance, for many applications no maintenance at all is required.

Service life
Nilar energy storage solutions achieve >2000 cycles.


Nilar EC design

The bi-polar design enables Nilar to produce modular batteries with improved volumetric power density and simplified battery construction. The modular concept makes it easy to match packs to different design requirements and to refit existing batteries to new demands in run-time or power. The main advantage of the bi-polar design utilized by Nilar is the common and shared large area current collector. This important feature reduces the volumetric overhead and inherently results in uniform current flow across the cell. Uniform current and resistance paths promote uniform heat gradients over the electrodes. A uniform battery temperature promotes a uniform electrochemical aging of the electrodes in the modules, which translates into a long service life.

Exploded view of the Nilar EC battery pack.

Pack design

The pack design achieves a compact assembly of cells and other components required in a battery pack to meet required system voltage and run-time. A typical pack consists of 12 different types of components, assembled to a pack by a pick and place manufacturing process, followed by electrolyte filling and formation by a few cycles of charging and discharging to activate the electrochemical system in the cells.

There is one end-piece on each side of the battery pack. Together with the steel bands the end-pieces provides uniform cell compression over the electrode surfaces, impact protection to the cell stack and electrical insulation from the pack potential.
The end-pieces also serves as a support structure for the electronic battery pack monitoring system mounted on one of the end-pieces.

Integrated monitoring unit
The integrated monitoring unit (IMU) is an electronic monitoring system, enclosed in a case and attached to the battery pack end-piece. The IMU monitors the conditions of the battery pack and communicates the measured data to the PLC.

Pressure sensor
The integrated pressure sensor enables recording of battery pack pressure. This signal is used for battery pack diagnostics and for high precision charge management. The risk of venting by overcharging the battery pack is eliminated by this unique feature.

Rupture disc
The Nilar battery pack is fitted with a rupture disc that is activated at a pressure of 7 bar. The rupture disc is located on the rear side of the battery pack. The rupture disc is only activated at abusive conditions. In normal operation the internal pressure of the Nilar battery pack is below the activation pressure of the rupture disc. When operated at specified operating conditions and at mild abusive conditions, the battery pack is sealed with no emissions of gases or electrolyte.

The 12 V module is the building block for all Nilar batteries. The 10 cells are connected in series to create modules with a rated capacity of 10 Ah and nominal voltage of 12 V.

Contact plate
The contact plate electrically connects the adjacent modules in the pack and thus eliminates the need for external connectors between modules.

The patented integrated cooling solution has optimized heat dissipation from the long sides on the battery pack, allowing for easy and low cost air cooling with minimal increase in system volume and low fan power.

The patented design has the heat conducting from the contact plates to the long side surface of the 12 V module, where stacked modules increase the effective surface area for air cooling.